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Abstract—Data sparsity poses a persistent challenge in Recom-
mender Systems (RS), driving the emergence of Cross-Domain
Recommendation (CDR) as a potential remedy. However, most
existing CDR methods often struggle to circumvent the transfer
of domain-specific information, which are perceived as noise
in the target domain. Additionally, they primarily concentrate
on inter-domain information transfer, disregarding the compre-
hensive exploration of data within intra-domains. To address
these limitations, we propose SUCCDR (Separating User features
with Compound samples), a novel approach that tackles data
sparsity by leveraging both cross-domain knowledge transfer and
comprehensive intra-domain analysis. Specifically, to ensure the
exclusion of noisy domain-specific features during the transfer
process, user preferences are separated into domain-invariant
and domain-specific features through three efficient constraints.
Furthermore, the unobserved items are leveraged to generate
compound samples that intelligently merge observed and un-
observed potential user-item interaction, utilizing a simple yet
efficient attention mechanism to enable a comprehensive and
unbiased representation of user preferences. We evaluate the
performance of SUCCDR on two real-world datasets, Douban
and Amazon, and compare it with state-of-the-art single-domain
and cross-domain recommendation methods. The experimental
results demonstrate that SUCCDR outperforms existing ap-
proaches, highlighting its ability to effectively alleviate data
sparsity problem.

Index Terms—Cross-Domain Recommendation, Transfer
Learning, Attention Mechanism.

I. Introduction

THE rapid development of the Internet inevitably brings
the problem of information overload to people’s life. And

recommender systems (RS) were born to effectively solve the
problem by quickly matching potential items of interest to
users in a large information flow. At present, recommender
systems have been widely used in various application sce-
narios, such as TikTok (Short Videos), Douban (Movies), and
Amazon (E-commerce). However, as the user-item interactions
become increasingly sparse, the performance drops dramati-
cally [1], which means existing recommendation approaches
are still significantly hindered by the inherent issue of data
sparsity [2]. Fortunately, the same user in real life tends to have
consistent preferences in different domains to some extend.
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Fig. 1. Comparison of our SUCCDR with traditional CDR methods in
terms of inter-domain and intra-domain potential preferences. (a) Unobserved
interaction as negative items. (b) The utilization of potential intra-domain
preferences with the proposed compound samples. (c) Total knowledge
transfer. (d) Inter-domain knowledge transfer with domain-invariant features.

So the cross-domain recommendation (CDR) was proposed to
alleviate the data sparsity problem [3]–[5] by introducing the
potential inter-domain user preference . As shown in Fig. 1,
Alex likes magic movies such as Frozen and Maleficent.
Therefore, we can transfer Alex’s movie preferences to the
book domain and thus recommending more magic books to
Alex. Vice versa, transferring Alex’s book preferences can also
help the recommendation of movies.

To facilitate knowledge transfer, CoNet [6] proposed cross-
connections network to continuously integrate dual-domain
features. DDTCDR [7] and DML [8], on the other hand,
leveraged orthogonal mapping functions to achieve knowledge
transfer between domains. GA-DTCDR [9] utilized attention
mechanisms to accomplish knowledge transfer across do-
mains. However, these approaches made the strong assumption
that users’ interests remain the same across domains so that
they primarily focus on generating user representations for
direct knowledge transfer. Unfortunately, it is overlooked that
users may have interest discrepancy in different domains that
is non-transferable. We call this portion of interest as domain-
specific preferences. While domain-invariant features represent
user preferences that are shared across domains, domain-
specific features are only relevant to the source domain and
can be considered as noise or even negatively impact the target
domain. Consequently, it becomes crucial to distinguish only
the domain-invariant features while disregarding the domain-
specific features during the knowledge transfer process. As
shown in Fig. 1 (d), the preference of story style and movie
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plot is good for recommending a book whereas the preferences
such as movie duration, and production region are irrelevant
and expected to be discarded from knowledge transfer.

Recently, some approaches have considered extracting and
transferring the domain-invariant features. ATLRec [10] uti-
lized MLPs to extract both domain-invariant and domain-
specific features, without imposing significant constraints on
them. DisenCDR [11] utilized variational inference techniques
and amplified the Kullback-Leibler (KL) divergence to sepa-
rate the two features from each other. MADD [12], being one
of the most advanced cross-domain recommendation methods,
leveraged an orthogonal loss to regularize the separation pro-
cess. However, we argue that solely relying on orthogonal loss
constraints or drawn-out distance constraints cannot guarantee
full extraction of domain-invariant features from the highly
entangled features. In the proposed SUCCDR, the separation
of domain-specific features and domain-invariant features is
accomplished by three well-designed constraints: separation
constraint and peeling constraint enforce the separation of both
features, and similarity constraint impels the efficient transfer
of domain-invariant features.

As discussed above, existing CDR approaches primarily
prioritize information transfer within inter-domains, paying
little attention to exploring a more effective and comprehensive
understanding of intra-domain user preferences. Actually, the
challenges of generating an efficient and transferable user
preference within each domain persists and should be regarded
equally important as the inter-domain preference transfer. In
terms of intra-domain modeling, most existing methods [13],
[14] follow traditional RSs to take observed items as positive
samples and unobserved items as negative samples for pref-
erences learning. However, as CDR is introduced to eliminate
the dilemma of data sparsity in a single domain, the extracted
intra-domain user preference in this scenario is highly likely
to be incomplete. More comprehensive user preferences can
be captured as the number of user-interacted items increases.
Fig. 2 validates this commonsense where an obvious improve-
ment in the recommendation performance is observed as the
number of interactions to learn a recommender increases.

This intuitive conclusion motivates us to take advantage
of potential positive items that users might be interested in
from a vast pool of uninteracted items, distinct from the
conventional strategy of considering all unobserved items as
negative samples. The potential user-item interactions can
effectively enrich the items used to learn user preference,
facilitating a more unbiased and comprehensive representation
of user preferences. As a result, the performance of the model
is expected to improve. For example, in Fig. 1, Alex likes
magic movies but has no interaction with Venom. Based
on the interaction histories of Venom with other users and
its property of magic, Alex will probably also like Venom,
which is obviously unwise to be taken as a negative sample.
To investigate the potential positive items, in the proposed
SUCCDR, we stochastically combine one observed item with
a random number of items from co-liked items to generate
one positive compound sample. With a simple yet efficient
attention mechanism, the potential positive items are utilized
as positive samples to alleviate the data sparsity problem.
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Fig. 2. The HR@10 performance of the BPR [15] model is evaluated on the
Douban dataset (Task 1 and Task 2 in Table I), where different proportions
of randomly selected user-item interactions from the training set are used as
positive samples for training and the test set is same for each dataset.

Our main contributions are summarized as follows:
• We propose SUCCDR which focuses on investigating

potential user preferences from both inter-domain and
intra-domain perspectives.

• User preferences are separated into domain-invariant and
domain-specific features with the former being transferred
between different domains and the latter being excluded.

• We innovatively propose compound samples that contain
a random number of items to take the advantage of
potential positive items within each domains. Besides, a
simple yet efficient attention mechanism is proposed for
compound feature fusion.

• Extensive experiments are carried out on Douban and
Amazon datasets. The results show that our model out-
performs several state-of-the-art single-domain and cross-
domain recommendation models.

The rest of this paper is organized as follows. In Sec.2, we
introduce the related works on CDR and feature separation.
Sec.3 presents the details of the proposed method. In Sec.4,
we present the experiments to demonstrate the effectiveness
of the model. Finally, we conclude this paper in Sec.5.

II. RelatedWork

A. Cross-Domain Recommendation

CDR is proposed to alleviate the data sparsity problem
in single user-item interaction domain. Existing CDR works
can be boardly classified into two branches: unidirectional
CDR and bidirectional CDR. Unidirectional CDR emphasize
the transfer of valuable information, such as textual infor-
mation [16]–[18], user social relationships [19], and item
attributes [20], from the source domain to the target domain.
This transfer strategies serves to address challenges such as
the cold start problem [21]–[23] and data sparsity problems in
the target domain.

Bidirectional CDR [24], [25] has gained significant attention
in recent years, drawing the inspiration from unidirectional
CDR. The objective of Bidirectional CDR is to enhance
the recommendation efficiency simultaneously in both two
domains by transferring relevant information to each other. To
achieve this objective, researchers have primarily focused on
developing directed or undirected pairwise transfer strategies.
Several approaches, such as CMF, CDTF, and CDFM [26]–
[28], utilized Matrix Factorization (MF) to leverage interac-
tions in the source domain as valuable information. However,
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these methods encounter challenges in capturing highly non-
linear user-item interaction patterns. As a result, researchers
have proposed models based on neural networks to address
this limitation. CoNet [6] adopted a cross-connections network
between Multi-Layer Perceptrons (MLPs) to facilitate knowl-
edge transfer. In DARec [29], the first step is to learn users’
rating patterns within each domain, and subsequently transfer
these rating patterns to other domains. GA-DTCDR [9] utilized
element-wise attention mechanisms to transfer user features
across domains. DDTCDR and DML [7], [8] employed a latent
orthogonal mapping function to transfer user preferences.
BITGCF [30], a method based on graph neural networks,
effectively incorporated a fusion layer to integrate cross-
domain features during the process of graph convolution.
This integration showcases promising performance results.
Our work also focuses on bidirectional knowledge transfer.
In contrast to these methods that transfer all information as a
whole, we separate user features into domain-invariant features
and domain-specific features, and only transfer the domain-
invariant features that are shared across domains.

B. Feature Separation in Recommendation

Feature separation is a technique that aims to learn distinct
representations of different factors from available interaction
data. This approach has proven to be highly effective in
improving the accuracy of recommendation systems within
a single domain [31]. Building upon this success, recent
research has extended the concept of feature separation to
CDR. By incorporating feature separation, these studies have
demonstrated its potential in enhancing the performance of
recommendation models. ATLRec [10] utilized two separate
Multi-Layer Perceptron (MLP) layers to extract both domain-
invariant features and domain-specific features unique to each
domain from the user’s original representations. CDAML [32]
employed a similar operation. Apart from that, there are
no constraints imposed on the two features within the do-
main. DisenCDR [11] introduced variational inference and
amplified the Kullback-Leibler (KL) divergence to distinguish
between domain-invariant features and domain-specific fea-
tures. MADD [12], a state-of-the-art Cross-Domain Recom-
mendation (CDR) method, enhanced the separation of domain-
specific features and domain-invariant features by applying
an orthogonal loss after feature extraction. Nonetheless, we
argue that relying solely on orthogonality constraints or feature
distance operations does not guarantee the effective separation
and enhanced information of domain-invariant and domain-
specific representations. This limitation often results in sub-
optimal recommendation performance. In contrast, our pro-
posed model incorporates multiple constraints to maximize the
transferable information in domain-invariant features as well
as excluding the transferable information from the domain-
specific features.

III. The ProposedModel

Fig. 3 mainly sketches the architecture of the proposed
SUCCDR model, including the compound sample module,
feature separation module, and constraint module. For clarity,

we only illustrate the paradigm in domain A and the paradigm
in domain B can be easily inferred accordingly. In this section,
we first describe the notations used in this paper and then
introduce the details of each model component.

A. Notations and Problem Definition

We consider a general CDR scenario where users in different
domains are common. DA and DB are used to denote two
domains. U denotes the common user set. VA and VB denote
item set of DA and DB, respectively. Two binary interaction
matrices YA ∈ {0, 1}|U|×|V

A | and YB ∈ {0, 1}|U|×|V
B | are used

to represent implicit user feedback, where the element rui is
1 if user u is observed to have interacted with item i and
0 otherwise (i.e., unobserved). I ∈ R|V|×d denotes the item
embedding, where d is the feature dimension. The overall user
preferences exhibited in each single domain, which is named
as domain-holistic features, are denoted as UHA ∈ R|U|×d

and UHB ∈ R|U|×d, respectively. Noticing that a partial of
user preference remains invariant across different domains,
in this work, we additionally separate user preferences into
domain-invariant ones and domain-specific ones. Specifically,
U I ∈ R|U|×d denoted the domain-invariant user preferences
while UPA ∈ R|U|×d and UPB ∈ R|U|×d denote domain-A-
specific and domain-B-specific user preferences, respectively.

B. Compound Samples for Intra-domains Potential Prefer-
ences

Most existing methods utilize observed items as positive
samples and randomly select some unobserved items as neg-
ative samples to train the model. However, in scenarios with
sparse user-item interaction, this setting often tends to learn
largely incomplete or biased user preferences due to the
presence of numerous potential positive samples hidden among
the unobserved items. To tackle this issue, we discard the
conventional sampling strategy and propose a novel compound
sampling strategy where each compound sample consists of a
random number of items within each domain. In particular, the
positive compound samples involve both observed items and
unobserved items. We further employ a simple yet efficient
attention mechanism to identify the potentially liked items
among the unobserved items and incorporate them with the
observed item to supplement user preferences from the intra-
domain perspective.

Compound Sampling Generation. As a basic hypothesis
of the collaborative filtering, users with similar preferences
are assumed to like common items [2], [33]. Motivated by
this, we construct the co-liked item set for each user, which
is regarded as the possibly liked item set so as to investigate
user’s potential preferences. As illustrated in compound sam-
ple module in Fig. 3, the target user in black is observed to
interact with a few items in green circles. The subsequent task
entails identifying similar users (depicted as black circles) who
have also interacted with these observed items. The co-liked
item set is then defined as a collection of all items (triangles)
that have been interacted with by these similar users.

Afterward, we stochastically select an observed item and a
random number of items from the co-liked item set to generate
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one positive compound sample. Among the co-liked items, the
item being co-liked by more similar users is more likely to be
a potential positive item. Therefore, we sample the unobserved
items with probability proportional to the number of similar
users who liked them.

In the case of a negative compound sample, it simply
selects a random number of items from the set of unobserved
items. While this procedure may appear similar to existing
methods [7], [34], [35], the key distinction lies in the selec-
tion of multiple unobserved samples. This deliberate choice
significantly enhances the likelihood of including at least one
true negative item within the negative sample. In comparison
to conventional single negative items, the negative compound
sample effectively diminishes bias during the optimization
process of user preferences.

Feature Fusion with Attention Mechanism. In line with
conventional Recommender Systems (RSs), the user’s pref-

erence for a particular item is typically represented by the
product of the user’s latent feature and the item’s latent
feature. Inspired by this, we propose a simple yet efficient
attention mechanism that fuses the features of different items
based on their correlation with user features. Fig. 4 visually
illustrates the process of feature fusion for a compound sample
comprising two items in domain A. The features of these
items, denoted as IA

in
for n = 1, 2, are multiplied with user

features in different prediction heads, for example, the domain-
holistic features UH

u employed in the similarity head, which
will be further explained later. Consequently, the element-wise
products between the user features and the respective item
features are calculated as follows:

sn = Uu(IA
in )T

, n = 1, ...,N, (1)

where N represents the number of items in a compound
sample, and in this specific scenario, N = 2. The variable
sn signifies the user’s individual preferences for the different
items. To obtain a normalized score, reflecting the relative
preference, these values are passed through a softmax activa-
tion layer, resulting in a probability distribution:

αn =
exp(sn)∑N
i=1 exp(si)

, n = 1, 2, ...,N. (2)

Afterwards, the attention weights αn are employed to fuse the
features of different items. The fused item features, denoted
as IA

i′ , are obtained through the following equation:

IA
i′ =

N∑
n=1

αnIA
in . (3)

The advantages of compound sampling strategy are as
follows. As the user and item features are gradually optimized,
the attention weight αn gradually converges towards the user’s
preference score for item in. Consequently, in a compound
sample containing only one observed positive item, the at-
tention weight assigned to that item will be high, while the
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Fig. 5. Optimization differences for samples in (a) conventional sampling
strategy and (b) compound sampling strategy.

weights for the remaining negative items will be low. This
means that the negative items have minimal impact, and the
compound sample is optimized in a similar manner to a single
positive item sampled using conventional strategies. However,
when a compound sample consists of one or more potential
positive items in addition to the observed positive item, the
attention weights for all positive items will be high. This
leads to a significant enhancement of the positive compound
sample features through the inclusion of the potential positive
items. This enhancement is beneficial in learning less biased
user preferences. Fig. 5 illustrates a comparison of the opti-
mization process between the conventional sampling strategy
and the proposed compound sampling strategy. In previous
methods, potential positive items (depicted as green triangles)
are considered negative and are pushed away from the user
preference (represented by the red point). In contrast, with the
compound sampling strategy, the potential positive item also
contributes to the user preference model, thereby alleviating
the data sparsity problem.

C. Feature Separation with Constraints for Inter-domains
Preferences

As illustrated in Fig. 3, the user preferences are represented
using three different forms. The domain-holistic features en-
capsulate the overall user preferences exhibited in single do-
main while the domain-invariant features and domain-specific
features stand for the components of user preferences that can
and cannot be shared across different domains, respectively.
To optimize these features, our approach incorporates three
specifically designed constraints, each tailored to a specific
prediction head.

Following conventional NCF [36] paradigm, the user fea-
tures are learned with simple multi-layer perception (MLP)
structures, which is formulated as:

f MLP(x|θ) = ψ(WLϕ(...(ϕ(W1x + b1))...) + bL), (4)

where x denotes the concatenated representations of user
features and fused item features. ϕ, ψ, W and b denote ReLU
activation function, Sigmoid activation function, the weight
matrix and the bias vector respectively. θ is used to represent
the parameters in MLP head for clarity. The MLP prediction
head is trained by binary cross-entropy loss, which can be
formulated as:

Lbce(r, r̂,R) = −
∑
R

r log r̂ + (1 − r) log(1 − r̂), (5)

where r and r̂ are the label and prediction score for each
sample, respectively; R is the sample set. Here the samples
refer to the compound samples proposed in Sec. III-B.

Separation Constraint. The separation constraint stems
from the motivation that user features is made up of domain-
invariant features and domain-specific features. Therefore, it
is reasonable to constrain that the combination of domain-
invariant features and the domain-specific features is expected
to reconstruct user-item interactions in different domains.
To implement this constraint, we design an MLP head that
combines the domain-invariant features and domain-specific
features. The prediction can be expressed as follows:

r̂A
se = F

A
se(U I

u ⊕ UPA
u ⊕ IA

i′ ),

r̂B
se = F

B
se(U I

u ⊕ UPB
u ⊕ IB

i′ ),
(6)

where F A
se(x) = f MLP(x|θA

se) and F B
se(x) = f MLP(x|θB

se) rep-
resent two independent MLP models. The variables U I

u, UP
u ,

and Ii′ denote the domain-invariant features, domain-specific
features, and fused compound sample features, respectively.
The operator ⊕ represents the concatenation operation. For
the sake of clarity, the user index u and compound sample
index i′ are omitted in the prediction score r̂.

The separation constraint can be expressed as cross-entropy
loss as follow:

LA
se = Lbce(rA, r̂A

se,R
A), LB

se = Lbce(rB, r̂B
se,R

B), (7)

where RA and RB represent the compound sample sets in
DA and DB, respectively. The variables rA and rB denote the
corresponding ground-truth scores inDA andDB, respectively.

Similarity Constraint. The primary objective of Cross-
Domain Recommendation is to facilitate the transfer of valu-
able user preferences across different domains. In order to
achieve this goal, it is crucial to maximize the effectiveness of
the transferred knowledge. However, relying solely on the sep-
aration constraint does not ensure that the extracted domain-
invariant features contain full information that is transferable.
In extreme cases, the domain-invariant features might lack
substantial effective information, resulting in the model resem-
bling two Single-Domain Recommendation (SDR) systems. To
overcome this limitation, we propose the similarity constraint,
which is designed to maximize the amount of domain-invariant
information, and thereby boost the effectiveness of the trans-
ferred knowledge.

To obtain as many transferable user preferences as possible,
we first introduce domain-holistic features that capture the
complete user preferences within each individual domain. The
corresponding MLP heads can be expressed as follows:

r̂A
sim = F

A
sim(UHA

u ⊕ IA
i′ ), r̂B

sim = F
B
sim(UHB

u ⊕ IB
i′ ), (8)

where UH
u denotes the domain-holistic features. F A

sim(x)
and F B

sim(x) are independent MLP heads, i.e., F A
sim(x) =

f MLP(x|θA
sim

) and F B
sim(x) = f MLP(x|θB

sim
).

Next, we are motivated by that domain-invariant features
are transferable parts of the domain-holistic features, and
propose to simultaneously maximize the similarity between the
domain-invariant features with each domain-holistic features.
Based on experimental results, the pearson similarity has been
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found to outperform cosine similarity. Therefore, the pearson
similarity is chosen in our model, and its formulation is as
follows:

ρA
sim =

cov(U I
u,U

HA
u )

σ(U I
u)σ(UHA

u )
, ρB

sim =
cov(U I

u,U
HB
u )

σ(U I
u)σ(UHB

u )
, (9)

cov(·, ·) and σ(·) calculate covariance and standard deviation,
respectively. Combining with cross entropy losses for holistic
MLP head, we get the overall similarity constraints as:

LA
sim = Lbce(rA, r̂A

sim,R
A) − λpρ

A
sim,

LB
sim = Lbce(rB, r̂B

sim,R
B) − λpρ

B
sim,

(10)

where λp is a hyper-parameter.
Peeling Constraint. To further ensure the complete separa-

tion of domain-invariant fetures and domain-specific features,
we further impose a peeling constraint on domain-specific
features. As domain-specific features represent the user pref-
erences irrelevant to the other domain, these features are
considered useless or even harmful for predicting user-item in-
teractions in the other domain. Motivated by this intuition, we
strengthen the domain-specific features upon domain-holistic
features and enforce the combined features to be less predictive
of user-item interactions when transferred to other domains. In
this way, the beneficial domain-invariant information is peeled
from domain-specific features. The prediction is implemented
by another set of MLP heads defined as:

r̂A
pe = F

A
pe(UPB

u ⊕ UHB
u ⊕ IA

i′ ),

r̂B
pe = F

B
pe(UPA

u ⊕ UHA
u ⊕ IB

i′ ),
(11)

where F A
pe(x) = f MLP(x|θA

pe), F B
pe(x) = f MLP(x|θB

pe). In the
peeling constraint, it is important to note that the user features
from DB and the item features from DA are used to predict
interaction score for compound samples belonging to DA. The
similar situation occurs in DB.

The incapacity to predict correct items is implemented by
optimizing the prediction score towards a uniform value, which
indicates that user has no clear preference for certain item. The
cross-entropy losses can be formulated as:

LA
pe = Lbce(r̄A, r̂A

pe,R
A), LB

pe = Lbce(r̄B, r̂B
pe,R

B), (12)

where r̄ denotes the uniform prediction score of a batch of
samples in our model, outperforming the fixed value of 0.5
suggested in [37], [38] based on experimental results.

The overall loss function is the combination of separation
constraint, similarity constraint and peeling constraint in dif-
ferent domains, written as:

L = LA
se +L

A
sim + λsL

A
pe +L

B
se +L

B
sim + λsL

B
pe, (13)

where λs is a hyper-parameter to balance the loss.

IV. Experiments and Analysis
In this section, we conduct extensive experiments on four

datasets to answer the following research questions (RQs):
• RQ1: How does the proposed SUCCDR model perform

in comparison with other state-of-the-art recommender?
• RQ2: Can the feature separation and compound sample

module improve recommendation performance?

TABLE I
Statistics of four CDR tasks on Douban and Amazon datasets.

Datasets Tasks Users Items Interactions Density

Douban
Task 1 Movie 2,106 9,555 969,937 4.82%

Book 6,777 95,974 0.67%

Task 2 Movie 1,665 9,555 833,676 5.24%
Music 5,567 69,680 0.75%

Amazon
Task 3 Movie 1,051 4,261 80,560 1.80%

Book 5,562 68,448 1.46%

Task 4 Movie 695 4,350 32,480 1.07%
Music 2,981 13,604 0.66%

• RQ3: Does our model achieve the separation of domain-
invariant user features and domain-specific user features?

• RQ4: How do different hyperparameter settings influence
the recommendation performance of our method?

• RQ5: How helpful is additional text information in im-
proving recommendation performance?

A. Datasets

We conduct extensive evaluations of the proposed model
on popularly used real-world datasets, i.e., Douban1 and
Amazon2.

The Douban dataset encompasses three distinct domains:
Douban Movie, Douban Book and Douban Music. These
domains have been acquired through a private crawl of
douban.com, and each of them comprises ratings, user profiles
(personal information of users and self-evaluation), reviews
(helpfulness text), and item details (descriptions, brands, cat-
egory information). Notably, several prestigious CDR works
(e.g., [39], [9], and [40]) have adopted this comprehensive
dataset for evaluation.

The Amazon dataset utilized in this study is derived from a
publicly accessible compilation of Amazon reviews. It encom-
passes an extensive assortment of 42 distinct domains or cate-
gories, encompassing ratings, user profiles, reviews, and item
specifics. As part of our evaluation process, we deliberately
choose pertinent domains to serve as experimental benchmarks
for our model, specifically Amazon Movie, Amazon Book, and
Amazon Music.

As this work focuses on the common user scenario in CDR,
we preprocess the datasets to remain only common users.
In addition, we normalize user ratings to 1 for those who
have rated, and 0 for those who have not. Based on the
above settings, we end up with four cross-domain tasks i.e.,
Douban Movie & Douban Book (task 1), Douban Movie &
Douban Music (task 2), Amazon Movie & Amazon Book (task
3) and Amazon Movie & Amazon Music (task 4). The detailed
statistics of datasets are shown in Table I.

B. Experimental Settings

1) Evaluation Protocols: In cross-domain recommendation
scenarios, the leave-one-out (LOO) evaluation technique en-
joys broad adoption, and we employ the same approach in
this work. To be specific, we randomly select one item from

1https://github.com/FengZhu-Joey/GA-DTCDR/tree/main/Data
2http://jmcauley.ucsd.edu/data/amazon/index 2014.html
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the set of items that a user has interacted with as the test
target item, while the remaining interacted items are used for
training to learn the user’s preferences. Consistent with the
literatures [7], [30], [39], we randomly sample 99 uninteracted
items for the user, which serve as the test negative items.
During the testing phase, the CDR model generates scores
for all 100 items per user and the top K items are considered
as the primary recommendations. Moreover, we employ two
widely adopted evaluation metrics, namely HR (Hit Ratio) and
NDCG (Normalized Discounted Cumulative Gain), to evaluate
the model’s efficacy in making recommendation. The metrics
measuring whether the target item is in the K primary recom-
mendation are denoted as HR@K and NDCG@K, accordingly.
To reduce the interference of randomness, we conduct five
times of training and testing for each model and report the
average results.

2) Parameter Settings: In our experiments, for each pos-
itive compound sample, we randomly generate five negative
compound samples that exclusively contain unobserved items.
We set the maximum number of epochs to 50, the learning rate
to 0.001, and the l2 regularization to 0.0005. The batch size
for Douban dataset is set to 4096, while for Amazon dataset,
it is set to 256. We use λp = 0.5, λs = 0.5. The dimension (d)
of the embedding varies within the set {32, 64}. The structure
of the MLP is defined as ”8d − 4d − d − 1”. To optimize the
model, we employ the Adam optimizer [41].

C. Baseline

We compare the proposed SUCCDR model with the follow-
ing baselines, including several state-of-the-art single-domain
and cross-domain recommendation methods.
• DeepMF [34]. Deep Matrix Factorization (DeepMF) em-

ploys a neural network-based deep matrix decomposition
model to effectively leverage both implicit and explicit
feedback information.

• NCF [36]. Neural Collaborative Filtering (NCF) com-
bines matrix factorization with multilayer perceptrons
(MLPs) to capture intricate nonlinear interactions be-
tween users and items.

• CoNet [42]. Co-occurrence Neural Network (CoNet) is
designed to effectively capture the intricate relationships
among items, thereby enabling a more comprehensive
understanding of user preference features.

• DTCDR [39]. Dual-Target Cross-Domain Recommenda-
tion (DTCDR) uses max-pooling operation on common
user embeddings to transfer user preference features
across domains. It should be noted that for a fair compari-
son, the text information of this model has been excluded
in this section.

• ACDR [43]. Adversarial Cross Domain Recommenda-
tion (ACDR) utilizes the idea of adversarial learning
to intelligently incorporate global user preferences and
domain-specific user preferences.

• DDTCDR [7]. Deep Dual Transfer Cross Domain Rec-
ommendation (DDTCDR) incorporates a latent orthog-
onal mapping function to facilitate the transfer of user
preferences across different domains.

• DML [8]. Dual Metric Learning (DML) employs a novel
latent orthogonal mapping function based on DDTCDR
to align the representations of shared users and facilitate
the transfer of user preferences across different domains.

• BITGCF [30]. Bi-directional Transfer Graph Collab-
orative Filtering Network (BITGCF) first generates
users/items representations based on two graph encoders
and then uses a bi-directional transfer layer to fuse user
features.

• ETL [44]. Equivalent Transformation Learner (ETL) in-
troduces a novel approach by proposing an equivalent
transformation learner that models the joint distribution
of user behaviors in two domains.

D. Performance Comparisons (for RQ1)

Comprehensive experiments have been conducted on var-
ious dimensions of the latent embedding representation (d
= 32 and d = 64). The corresponding experimental results
on HR@10 and NDCG@10 are provided in Table II and
Table III for different tasks as defined in Sec. IV-A. Note that
for single-domain recommendation (SDR) models, we train
these models individually for each domain and report their
respective results. Several observations can be drawn from the
experimental results in Table II to III:

• For single-domain methods: (1) The majority of single-
domain recommendation methods perform inferior to
cross-domain recommendation methods. For Douban
Movie in task 1, the average performance of cross-domain
methods improves over the single-domain methods by
4.18% and 4.17% in HR with regard to d = 32 & 64. The
corresponding performance gain in NDCG is 6.37%, and
3.83% with regard to d = 32 & 64. This discrepancy in
performance can be attributed to the effective knowledge
transfer across different domains. (2) The comparable
performance of NCF and CoNet highlights the validity
and rationality of learning item relationships.

• For cross-domain methods: (1) The varying perfor-
mance of different cross-domain methods indicates that
the choice of transferring strategies can have a significant
impact on the recommended performance. (2) The results
obtained from DML and DDTCDR indicate that the
utilization of an orthogonal mapping function can con-
tribute to enhancing the recommendation performance.
(3) BiTGCF outperforms other baselines significantly
across all four tasks, demonstrating the effectiveness of
using Graph Neural Networks (GNNs) for knowledge
transfer across domains. (4) ETL and ACDR, both in-
corporating domain-specific features, achieve comparable
results on the Douban datasets. This observation suggests
the feasibility of separating user features into domain-
specific and domain-invariant features.

• For our SUCCDR: (1) Across all four cross-domain
recommendation tasks, SUCCDR consistently surpasses
that of all baseline methods in terms of recommendation
performance. This consistent superiority in performance
demonstrates the effectiveness of utilizing potential item
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TABLE II
Performance comparison of different methods on Douban Datasets (task 1 and task 2) with d = 32 & 64. The best performance is boldfaced and the second

best performance is underlined.

Method SUCCDR BITGCF ETL DML DDTCDR ACDR DTCDR CoNet NeuMF DeepMF

Douban
d=32

Movie HR 70.13 68.42 67.95 68.66 68.80 67.43 67.95 66.70 67.76 62.73
NDCG 45.61 44.19 43.09 43.37 43.30 42.61 42.95 42.22 42.25 38.47

Book HR 50.76 47.72 47.82 46.34 46.01 46.11 46.05 46.43 46.87 46.87
NDCG 31.43 29.55 28.94 28.21 28.01 27.96 26.18 27.86 28.80 28.26

Movie HR 69.90 67.61 67.85 68.53 67.99 66.55 66.55 65.77 67.09 59.70
NDCG 44.31 41.91 42.10 42.26 41.99 41.18 41.26 41.10 42.61 36.03

Music HR 46.13 43.12 43.79 42.56 41.74 39.42 35.56 40.88 41.98 41.68
NDCG 26.42 23.61 24.54 23.54 23.38 21.36 18.76 23.04 23.54 23.46

Douban
d=64

Movie HR 69.75 69.04 69.15 69.09 68.71 67.68 68.80 66.81 67.38 64.20
NDCG 45.33 44.32 43.00 43.81 43.60 42.47 43.93 42.22 43.60 40.67

Book HR 51.03 48.29 48.48 48.34 46.68 47.15 47.10 47.50 46.77 47.34
NDCG 31.95 30.15 29.46 29.11 28.87 28.33 28.69 28.01 29.28 29.32

Movie HR 69.30 67.87 68.15 67.97 67.45 66.85 66.93 66.37 66.73 62.22
NDCG 44.17 42.29 42.74 42.24 42.12 41.85 42.70 41.14 42.74 38.44

Music HR 46.54 42.98 43.12 43.30 43.42 39.96 37.48 42.40 42.40 42.22
NDCG 26.54 24.95 24.54 24.73 24.93 22.99 20.83 23.49 24.13 23.32

TABLE III
Performance comparison of different methods on Amazon Datasets (task 3 and task 4) with d = 32 & 64. The best performance is boldfaced and the second

best performance is underlined.

Method SUCCDR BITGCF ETL DML DDTCDR ACDR DTCDR CoNet NeuMF DeepMF

Amazon
d=32

Movie HR 52.90 50.62 46.15 50.33 50.71 40.72 48.72 49.06 49.48 38.63
NDCG 34.25 29.34 25.03 27.92 27.61 21.31 26.30 27.55 28.16 19.59

Book HR 69.93 67.27 63.28 65.84 65.84 49.00 65.18 65.18 64.99 54.71
NDCG 52.72 45.48 39.80 41.84 41.12 31.74 41.70 41.61 43.94 33.94

Movie HR 46.04 45.54 45.45 42.59 42.58 32.66 40.86 41.73 43.59 35.25
NDCG 30.48 27.42 26.56 24.11 23.67 17.30 23.09 23.87 25.29 19.32

Music HR 36.55 35.42 35.62 34.96 35.11 22.88 31.37 33.67 32.16 28.06
NDCG 22.54 20.01 21.89 19.42 19.96 11.64 18.45 18.93 19.75 14.46

Amazon
d=64

Movie HR 54.42 52.90 49.10 48.91 49.00 41.30 48.72 48.61 49.86 39.96
NDCG 36.32 33.84 27.47 27.36 27.83 22.98 27.72 27.12 29.02 20.94

Book HR 72.12 70.98 64.26 66.41 66.41 51.38 66.03 66.08 67.70 56.80
NDCG 57.61 49.80 40.38 43.52 43.87 33.71 46.78 43.47 45.60 36.22

Movie HR 48.63 48.49 47.59 44.46 43.74 32.52 40.86 42.59 45.33 36.26
NDCG 31.32 29.96 29.17 25.78 25.57 17.15 24.10 24.81 25.98 18.89

Music HR 38.30 37.11 37.33 37.41 37.70 23.96 31.80 35.18 33.96 31.08
NDCG 24.06 21.92 22.44 21.83 21.92 12.88 19.69 21.05 21.65 15.81

information and only transferring domain-invariant fea-
tures. For example, in Douban Movie (Task 1), our model
surpasses the runner-up results by improving HR and
NDCG by 1.93% and 3.21% respectively at d = 32. In
Douban Book (Task 1), our model achieves a 6.15% HR
improvement and a 6.36% NDCG improvement over the
runner-up with regard to d = 32. (2) Certain methods
exhibit sensitivity to specific datasets, as exemplified by a
notable decline in the performance of ACDR on Amazon
datasets. This sensitivity could be attributed to the limited
size of the Amazon interaction data, which may hin-
der effective model optimization. However, our proposed
model maintains outstanding stability and performance
consistency across datasets of varying sizes, validating
its remarkable robustness.

TABLE IV
Ablation study of key modules of SUCCDR on two tasks with d = 32. w/o
CS removes the compound sample module to sample only one item. w/o Sam
samples unobserved items randomly in the whole item set. V-Sim samples
unobserved items based on the similarity of pretrained item embedding. w/o

Att directly sums up the item features in the compound sample.

Datasets Metrics w/o Att V-Sim w/o Sam w/o CS SUCCDR

Movie HR 69.32 68.69 69.58 69.25 70.13
NDCG 45.01 44.77 45.09 44.64 45.61

Book HR 49.98 49.59 50.15 48.18 50.76
NDCG 30.78 30.88 30.98 29.32 31.43

Movie HR 69.39 68.99 69.24 68.87 69.90
NDCG 44.07 43.53 43.79 43.66 44.31

Music HR 45.64 44.61 45.57 43.78 46.13
NDCG 26.01 25.84 26.27 24.64 26.42
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E. Ablation Study (for RQ2)

1) Impact of Compound Sample Module: To validate the
efficacy of our proposed compound sample module, which
aims to enhance the discovery of potential user preferences,
we have conducted a series of ablation studies from the
perspective of conventional single sample, variant sampling
strategy of the unobserved items, and sample feature fusion.
Specifically, w/o CS directly discards the compound sample
module and follows the previous model settings of sampling
one item for one user. w/o Sam samples unobserved items
randomly in the whole item set instead of in the co-liked
item set while V-Sim samples unobserved items based on
the similarity of pretrained item embedding by NCF. Both
two variant sampling strategies generate the same number of
items as our model for fair comparison. w/o Att directly sums
up the item features in the compound sample without the
attention mechanism. The experimental results are presented in
Table IV. We can observe that: (1) The SUCCDR consistently
outperforms w/o CS, indicating that our compound samples
effectively leverage potential positive items to learn user
features with reduced bias. (2) w/o Sam performs worse than
the proposed method, indicating that our co-liked sampling
strategy can find more potential positive items than direct
randomly sampling. Moreover, in comparison to V-Sim, our
method exhibits a performance improvement. This can be
attributed to the fact that sampling based on the item similarity
has a higher probability of selecting very similar items, which
does not significantly contribute to refining user features. On
the other hand, our algorithm incorporates sampling based on
co-liked items, ensuring a high likelihood of user preferences
while also introducing certain unobserved types of items. This
approach enhances the diversity of recommended items, con-
sequently refining the potential user features. (3) The observed
performance degradation of w/o Att implies that utilizing the
attention mechanism to assign varying optimization weights
based on user favorability assist in effectively leveraging
potential positive items.

2) Impact of Feature Separation: In order to demonstrate
the effectiveness of feature separation, we have conducted
additional experiments by transferring domain-holistic features
using an element-wise attention mechanism rather than trans-
ferring only only domain-invariant features. The corresponding
model is denoted as EWCCDR. In addition, to show the effi-
ciency of the proposed three constrains, we carry out ablation
studies by removing or replacing certain constraints. w/o Peel
denotes the elimination of peeling constraint, w/o Sim denotes
the removal of similarity constraint. Furthermore, we intro-
duce orthogonal constraints (V-orth) on domain-invariant and
domain-specific features within each domain, a widely adopted
technique by existing models [7], [12]. The experimental
results, as depicted in Fig. 6, validate the effectiveness of our
proposed method. We have the following key observations: (1)
Our model consistently outperforms EWCCDR, highlighting
the necessity of separating user features and limiting cross-
domain transfer solely to domain-invariant features. (2) The
observed decline in performance for both w/o Sim and w/o Peel
compared to SUCCDR suggests that the presence of similarity
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Fig. 6. Performance comparison of different variants of SUCCDR on two
tasks with d = 32. w/o Peel and w/o Sim remove the peeling constraint and
similarity constraint, respectively. EWCCDR transfers domain-holistic fea-
tures. V-orth applies orthogonal constraints on domain-invariant and domain-
specific features.

constraint plays a crucial role in maximizing domain-invariant
information within the transferred features. Simultaneously,
the peeling constraint contribute to minimizing the inclusion
of domain-invariant information within the domain-specific
features, thereby promoting enhanced feature separation. This
phenomenon highlights the significance of both similarity and
separation constraints in optimizing the overall performance
of the model. (3) The superior performance of our model
compared to V-orth underscores the limitations of relying on
orthogonal constraints.

F. Latent User Factor Visualization (for RQ3)

In line with our research objective, we separate user features
into domain-invariant features and domain-specific features.
To validate the effectiveness of our model in separating
domain-invariant features from domain-specific features, we
employ the t-SNE [45] nonlinear dimensionality reduction
technique to transform the separated high-dimensional user
features into two-dimensional representations. Specifically, we
apply the t-SNE dimensionality reduction process to both our
proposed method and the EWCCDR method, separately for
Task 1 and Task 2. The resulting visualizations are presented
in Fig. 7.

The results depicted in Fig. 7 (a) and (c) highlight the
significant overlap of user features between the two domains
in the EWCCDR method, making it difficult to differentiate
between them. This finding suggests that there are inherent
similarities in the user features across the two domains.
Conversely, Fig. 7 (b) and (d) provide compelling evidence
that our proposed SUCCDR model successfully separates user
features within each domain while ensuring distinct separation
of domain-specific features for both domains.
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(a) EWCCDR (task 1) (b) SUCCDR (task 1) (c) EWCCDR (task 2) (d) SUCCDR (task 2)

Fig. 7. t-SNE visualization of user embeddings in EWCCDR and SUCCDR. (a) and (b) are the results of Douban Movie and Douban Book (task 1). (c) and
(d) are the results of Douban Movie and Douban Music (task 2).

(a) Performance Variation on the Douban Movie and Douban Book (Task 1).

(b) Performance Variation on the Douban Movie and Douban Music (Task 2).

Fig. 8. Unraveling the Impact of Item Numbers N in Compound Samples with d = 32. We investigate two distinct approaches employed for the generation
of compound samples. The first method involves selecting a fixed number of N items for each compound sample. Conversely, the second method involves a
random selection process where the number of items in each compound sample is chosen to be not more than N. Please note that when N = 1, the two cases
are identical.

(a) The Effect of Similarity coefficient λs.

(b) The Effect of Peeling coefficient λp.

Fig. 9. Investigating the Impact of Key Hyperparameters on Model Perfor-
mance using Douban dataset, with the feature dimension d = 32.

G. Parameter Sensitivity (for RQ4)

In this section, we study the impact of key hyper-parameters
on model performance, including N, λp and λs.

1) Impact of Item Numbers in Compound Samples: The
compound sample plays a critical role in SUCCDR, facilitating
the model’s ability to delve into users’ potential preferences.
To gain a deeper understanding of the compound sample’s
significance, this section extensively examines the influence
of item numbers in compound samples. By thoroughly inves-
tigating the impact of varying item numbers, we aim to unravel
the intricate relationship between the compound sample and
its capacity to uncover and explore the potential preferences
of users. Based on the experimental results presented in Fig. 8,
several notable phenomena and conclusions can be derived: (1)
Remarkably, irrespective of the scenarios, the model consis-
tently exhibits superior recommendation performance when N
= 2 compared to N = 1. This compelling finding suggests that
our proposed compound sample module successfully leverage
items that users may also like, thereby exemplifying its ability
to tap into their potential preferences effectively. (2) The mod-
els employing a random number of items up to N consistently
outperform the corresponding models with fixed N items. This
can be attributed to the increased robustness resulting from the
uncertainty introduced in compound samples. (3) In the case
of random generation, the sparser book and music domains

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3374577

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 28,2024 at 09:44:00 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

3 0

4 0

5 0

6 0

7 0
HR

@1
0

M o v i e B o o k M o v i e M u s i c M o v i e B o o k M o v i e M u s i c M o v i e B o o k M o v i e M u s i c M o v i e B o o k M o v i e M u s i c

D T C D R  + t e x t  O u r  M o d e l O u r  M o d e l  + t e x t D T C D R

( a )  D o u b a n  D a t a s e t s ( a )  A m a z o n  D a t a s e t s

2 0

3 0

4 0

5 0

ND
CG

@1
0

2 0
3 0
4 0
5 0
6 0
7 0

HR
@1

0

2 0

3 0

4 0

5 0

6 0

ND
CG

@1
0

Fig. 10. The effectiveness of text information with d = 32. The light histogram represents performance under normal conditions, while the dark histogram
shows performance after the introduction of text information.

tend to achieve optimal performance with larger values of
N, while the denser movie domain shows a different trend.
This phenomenon can be attributed to the nature of dataset
density. In denser datasets, users’ existing interactions already
provide a comprehensive representation of their preferences.
Therefore, employing excessively large compound samples in
such cases may introduce noise and unnecessary information.
On the other hand, in sparser datasets, the existing interactions
may not sufficiently capture users’ complete preferences. Con-
sequently, the use of compound samples becomes crucial for
exploring and uncovering users’ potential preferences in such
scenarios.

2) Impact of Similarity coefficient λs and peeling coefficient
λp: We conduct experiments to study the effects of λp and λs

by varying them in {0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1} and
Fig. 9 (a)-(b) show results of λs and λp respectively. All
results exhibit a general pattern of initially increasing and then
decreasing recommendation performance. An appropriately
chosen value for λs maximizes the information captured by
the domain-invariant features. However, if λs is set to an
excessively large value, it introduces noise during knowl-
edge transfer, leading to suboptimal solutions. The impact
of λp exhibits similar trends, where suitable values of λp

effectively extract the transferable information from domain-
specific features. However, excessively large λp shifts the
model’s focus towards domain-specific features, leading to
performance decline.

H. Effectiveness of additional text information (for RQ5)

To address the issue of data sparsity, other approaches
[9], [40] leverage multi-source information, including text,
images, and more. In this section, we investigate the influence
of text information, which encompasses reviews, tags, user
profiles, and item details. We extract text embeddings using
the Doc2vec [46] and utilize them as user and item features.
For simplicity, we directly concatenate the extracted textual
features with the learnable interaction features.

Fig. 10 shows the effectiveness of text information. For fair
comparison, we also report the results of original DTCDR
which contains text information. We can observe that (1)
Across different methods and datasets, the introduction of
additional text information consistently improves the recom-
mendation performance of the model, providing clear evidence
that text information is helpful in addressing the data sparsity

problem. (2) The impact of text information varies across
various datasets. For instance, the improvement observed in
the Douban Movie domain is relatively smaller compared to
the enhancement seen in the Douban book and Douban Music
domains. This difference can be attributed to the density of
the Douban Movie domain, where the average number of
user interactions is higher. As a result, the model can already
capture user preferences comprehensively through existing
interactions alone, making the role of text information less
pronounced in this particular domain.

V. Conclusion
In this paper, we propose a novel cross-domain recom-

mendation algorithm named SUCCDR to address data spar-
sity problem. A novel sampling strategy called compound
sampling is proposed to alleviate the biased user prefer-
ences caused by sparse user-item interaction. The compound
samples containing both observed and unobserved items are
optimized with an attention mechanism to take advantage of
potential positive items within intra-domains. In addition, in
contrast to blindly transferring the inter-domain knowledge,
we separate user preferences into domain-invariant features
and domain-specific features, which are accomplished by three
well-designed constraints. Finally, SUCCDR is validated by
extensive experiments on real-world datasets, showing better
performance than state-of-the-art SDR and CDR methods.

References
[1] F. Zhu, Y. Wang, C. Chen, J. Zhou, L. Li, and G. Liu, “Cross-domain

recommendation: Challenges, progress, and prospects,” in International
Joint Conferences on Artificial Intelligence Organization (IJCAI), 8
2021, pp. 4721–4728.

[2] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabora-
tive filtering recommendation algorithms,” in International World Wide
Web Conference (WWW), 2001, p. 285–295.

[3] S. Berkovsky, T. Kuflik, and F. Ricci, “Cross-domain mediation in
collaborative filtering,” in International conference on User Model-
ing (UM), 2007, p. 355–359.

[4] P. Cremonesi, A. Tripodi, and R. Turrin, “Cross-domain recom-
mender systems,” in International Conference on Data Mining Work-
shops (ICDMW), 2011, pp. 496–503.

[5] I. Cantador, I. Fernández-Tobı́as, S. Berkovsky, and P. Cremonesi,
“Cross-domain recommender systems,” in Recommender Systems Hand-
book, 2015, pp. 919–959.

[6] G. Hu, Y. Zhang, and Q. Yang, “Conet: Collaborative cross networks
for cross-domain recommendation,” in International Conference on
Information and Knowledge Managemen (CIKM), 2018, p. 667–676.

[7] P. Li and A. Tuzhilin, “Ddtcdr: Deep dual transfer cross domain
recommendation,” in International Conference on Web Search and Data
Mining (WSDM), 2020, pp. 331––339.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3374577

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 28,2024 at 09:44:00 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[8] P. Li and A. Tuzhilin, “Dual metric learning for effective and efficient
cross-domain recommendations,” IEEE Transactions on Knowledge and
Data Engineering (TKDE), vol. 35, no. 1, pp. 321–334, 2021.

[9] F. Zhu, Y. Wang, C. Chen, G. Liu, and X. Zheng, “A graphical and
attentional framework for dual-target cross-domain recommendation,”
in International Joint Conferences on Artificial Intelligence Organiza-
tion (IJCAI), 2020, pp. 3001–3008.

[10] Y. Li, J.-J. Xu, P.-P. Zhao, J.-H. Fang, W. Chen, and L. Zhao, “Atlrec:
An attentional adversarial transfer learning network for cross-domain
recommendation,” Journal of Computer Science and Technology (JCST),
vol. 35, no. 4, p. 794–808, 2020.

[11] J. Cao, X. Lin, X. Cong, J. Ya, T. Liu, and B. Wang, “Disencdr: Learn-
ing disentangled representations for cross-domain recommendation,” in
International Conference on Research and Development in Information
Retrieval (SIGIR), 2022, p. 267–277.

[12] X. Zhang, J. Li, H. Su, L. Zhu, and H. T. Shen, “Multi-level attention-
based domain disentanglement for bcdr,” ACM Transactions on Infor-
mation Systems (TOIS), vol. 41, no. 4, 2023.

[13] F. Liu, H. Chen, Z. Cheng, A. Liu, L. Nie, and M. Kankanhalli,
“Disentangled multimodal representation learning for recommendation,”
IEEE Transactions on Multimedia (TMM), pp. 1–11, 2022.

[14] H. Tang, G. Zhao, J. Gao, and X. Qian, “Personalized representation
with contrastive loss for recommendation systems,” IEEE Transactions
on Multimedia (TMM), pp. 1–11, 2023.

[15] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“Bpr: Bayesian personalized ranking from implicit feedback,” in the
Conference on Uncertainty in Artificial Intellige (UAI), 2009, pp. 452–
461.

[16] S. Tan, J. Bu, X. Qin, C. Chen, and D. Cai, “Cross domain recommen-
dation based on multi-type media fusion,” Neurocomputing, vol. 127,
pp. 124–134, 2014.

[17] G. Hu, Y. Zhang, and Q. Yang, “Transfer meets hybrid: A synthetic
approach for cross-domain collaborative filtering with text,” in Interna-
tional World Wide Web Conference (WWW), 2019, p. 2822–2829.

[18] Z. Cheng, X. Chang, L. Zhu, R. C. Kanjirathinkal, and M. Kankanhalli,
“Mmalfm: Explainable recommendation by leveraging reviews and
images,” ACM Transactions on Information Systems (TOIS), vol. 37,
no. 2, 2019.

[19] M. Kaminskas and F. Ricci, “Location-adapted music recommendation
using tags,” in The International Conference on User Modeling, Adap-
tion, and Personalization (UMAP), 2011, p. 183–194.

[20] S. Berkovsky, T. Kuflik, and F. Ricci, “Mediation of user models for
enhanced personalization in recommender systems,” User Modeling and
User-Adapted Interaction, vol. 18, no. 3, p. 245–286, 2008.

[21] C. Zhao, C. Li, R. Xiao, H. Deng, and A. Sun, “Catn: Cross-domain
recommendation for cold-start users via aspect transfer network,” in
International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), 2020, p. 229–238.

[22] H. Su, Y. Zhang, X. Yang, H. Hua, S. Wang, and J. Li, “Cross-
domain recommendation via adversarial adaptation,” in International
Conference on Information and Knowledge Managemen (CIKM), 2022,
p. 1808–1817.

[23] Y. Zhu, Z. Tang, Y. Liu, F. Zhuang, R. Xie, X. Zhang, L. Lin, and
Q. He, “Personalized transfer of user preferences for cross-domain
recommendation,” in International Conference on Web Search and Data
Mining (WSDM), 2022, pp. 1507–1515.

[24] J. Liu, P. Zhao, F. Zhuang, Y. Liu, V. S. Sheng, J. Xu, X. Zhou,
and H. Xiong, “Exploiting aesthetic preference in deep cross networks
for cross-domain recommendation,” in International World Wide Web
Conference (WWW), 2020, p. 2768–2774.

[25] C. Zhao, C. Li, and C. Fu, “Cross-domain recommendation via prefer-
ence propagation graphnet,” in International Conference on Information
and Knowledge Managemen (CIKM), 2019, p. 2165–2168.

[26] A. P. Singh and G. J. Gordon, “Relational learning via collective matrix
factorization,” in International conference on Knowledge discovery and
data mining (KDD), 2008, pp. 650–658.

[27] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu, “Personalized
recommendation via cross-domain triadic factorization,” in International
World Wide Web Conference (WWW), 2013, pp. 595–606.

[28] B. Loni, Y. Shi, M. Larson, and A. Hanjalic, “Cross-domain collabora-
tive filtering with factorization machines,” in Advances in Information
Retrieval, 2014, pp. 656–661.

[29] F. Yuan, L. Yao, and B. Benatallah, “Darec: Deep domain adaptation
for cross-domain recommendation via transferring rating patterns,” in
International Joint Conferences on Artificial Intelligence Organiza-
tion (IJCAI), 2019, pp. 4227––4233.

[30] M. Liu, J. Li, G. Li, and P. Pan, “Cross domain recommendation via
bi-directional transfer graph collaborative filtering networks,” in Interna-
tional Conference on Information and Knowledge Managemen (CIKM),
2020, p. 885–894.

[31] X. Wang, H. Jin, A. Zhang, X. He, T. Xu, and T.-S. Chua, “Disentangled
graph collaborative filtering,” in International Conference on Research
and Development in Information Retrieval (SIGIR), 2020, p. 1001–1010.

[32] J. Xu, J. Song, Y. Sang, and L. Yin, “Cdaml: A cluster-based domain
adaptive meta-learning model for cross domain recommendation,” World
Wide Web, vol. 26, no. 3, p. 989–1003, jun 2022.

[33] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods
and metrics for cold-start recommendations,” in International Confer-
ence on Research and Development in Information Retrieval (SIGIR),
2002, p. 253–260.

[34] H.-J. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, “Deep matrix
factorization models for recommender systems,” in International Joint
Conferences on Artificial Intelligence Organization (IJCAI), 2017, pp.
3203–3209.

[35] W. Nie, X. Wen, J. Liu, J. Chen, J. Wu, G. Jin, J. Lu, and A.-A.
Liu, “Knowledge-enhanced causal reinforcement learning model for
interactive recommendation,” IEEE Transactions on Multimedia (TMM),
pp. 1–14, 2023.

[36] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collab-
orative filtering,” in International World Wide Web Conference (WWW),
2017, p. 173–182.

[37] Y. Fu, Y. Fu, J. Chen, and Y.-G. Jiang, “Generalized meta-fdmixup:
Cross-domain few-shot learning guided by labeled target data,” IEEE
Transactions on Image Processing, vol. 31, pp. 7078–7090, 2022.

[38] M. Li, P.-Y. Huang, X. Chang, J. Hu, Y. Yang, and A. Hauptmann,
“Video pivoting unsupervised multi-modal machine translation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 45,
no. 3, pp. 3918–3932, 2023.

[39] F. Zhu, C. Chen, Y. Wang, G. Liu, and X. Zheng, “Dtcdr: A framework
for dual-target cross-domain recommendation,” in International Confer-
ence on Information and Knowledge Managemen (CIKM), 2019, pp.
1533––1542.

[40] C. Zhao, H. Zhao, M. HE, J. Zhang, and J. Fan, “Cross-domain
recommendation via user interest alignment,” in International World
Wide Web Conference (WWW), 2023, p. 887–896.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015,
pp. 1–15.

[42] M. Chen, Y. Li, and X. Zhou, “Conet: Co-occurrence neural networks
for recommendation,” Future Generation Computer Systems, vol. 124,
pp. 308–314, 2021.

[43] P. Li, B. Brost, and A. Tuzhilin, “Adversarial learning for cross do-
main recommendations,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 14, no. 1, pp. 1–25, 2022.

[44] X. Chen, Y. Zhang, I. W. Tsang, Y. Pan, and J. Su, “Toward equivalent
transformation of user preferences in cross domain recommendation,”
ACM Transactions on Information Systems (TOIS), vol. 41, no. 1, pp.
1–31, 2023.

[45] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng,
and T. Darrell, “Decaf: A deep convolutional activation feature for
generic visual recognition,” in International Conference on International
Conference on Machine Learning (ICML), 2014, pp. 647–655.

[46] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International Conference on International Conference
on Machine Learning (ICML), 2014, pp. 1188–1196.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3374577

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 28,2024 at 09:44:00 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Related Work
	Cross-Domain Recommendation
	Feature Separation in Recommendation

	The Proposed Model
	Notations and Problem Definition
	Compound Samples for Intra-domains Potential Preferences
	Feature Separation with Constraints for Inter-domains Preferences

	Experiments and Analysis
	Datasets
	Experimental Settings
	Evaluation Protocols
	Parameter Settings

	Baseline
	Performance Comparisons (for RQ1)
	Ablation Study (for RQ2)
	Impact of Compound Sample Module
	Impact of Feature Separation

	Latent User Factor Visualization (for RQ3)
	Parameter Sensitivity (for RQ4)
	Impact of Item Numbers in Compound Samples
	Impact of Similarity coefficient s and peeling coefficient p

	Effectiveness of additional text information (for RQ5)

	Conclusion
	References

